Comparison of Different Machine Learning Approaches for Monthly Satellite-Based Soil Moisture Downscaling over Northeast China

نویسندگان

  • Yangxiaoyue Liu
  • Yaping Yang
  • Wenlong Jing
  • Xiafang Yue
چکیده

Although numerous satellite-based soil moisture (SM) products can provide spatiotemporally continuous worldwide datasets, they can hardly be employed in characterizing fine-grained regional land surface processes, owing to their coarse spatial resolution. In this study, we proposed a machine-learning-based method to enhance SM spatial accuracy and improve the availability of SM data. Four machine learning algorithms, including classification and regression trees (CART), K-nearest neighbors (KNN), Bayesian (BAYE), and random forests (RF), were implemented to downscale the monthly European Space Agency Climate Change Initiative (ESA CCI) SM product from 25-km to 1-km spatial resolution. During the regression, the land surface temperature (including daytime temperature, nighttime temperature, and diurnal fluctuation temperature), normalized difference vegetation index, surface reflections (red band, blue band, NIR band and MIR band), and digital elevation model were taken as explanatory variables to produce fine spatial resolution SM. We chose Northeast China as the study area and acquired corresponding SM data from 2003 to 2012 in unfrozen seasons. The reconstructed SM datasets were validated against in-situ measurements. The results showed that the RF-downscaled results had superior matching performance to both ESA CCI SM and in-situ measurements, and can positively respond to precipitation variation. Additionally, the RF was less affected by parameters, which revealed its robustness. Both CART and KNN ranked second. Compared to KNN, CART had a relatively close correlation with the validation data, but KNN showed preferable precision. Moreover, BAYE ranked last with significantly abnormal regression values.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China

Environmental monitoring of Earth from space has provided invaluable information for understanding land–atmosphere water and energy exchanges. However, the use of satellite-based precipitation observations in hydrologic and environmental applications is often limited by their coarse spatial resolutions. In this study, we propose a downscaling approach based on precipitation–land surface charact...

متن کامل

Downscaling GLDAS Soil Moisture Data in East Asia through Fusion of Multi-Sensors by Optimizing Modified Regression Trees

Soil moisture is a key part of Earth’s climate systems, including agricultural and hydrological cycles. Soil moisture data from satellite and numerical models is typically provided at a global scale with coarse spatial resolution, which is not enough for local and regional applications. In this study, a soil moisture downscaling model was developed using satellite-derived variables targeting Gl...

متن کامل

Downscaling of Soil Moisture Retrieved from Multi-sensor Remote Sensing Data over the Zhanghe Irrigation Area, China

EXTENDED ABSTRACT Soil moisture plays a vital role in the atmosphere-land interactions, hydrological simulation, weather numerical prediction and agricultural arid monitoring. It may control the partition of water and energy into sensible heat flux, latent heat flux, evapotranspiration, runoff and baseflow between land and atmosphere respectively. In order to obtain the profile of soil moisture...

متن کامل

Mapping Fine Spatial Resolution Precipitation from TRMM Precipitation Datasets Using an Ensemble Learning Method and MODIS Optical Products in China

Precipitation data are important for the fields of hydrology and meteorology, and are fundamental for ecosystem monitoring and climate change research. Satellite-based precipitation products are already able to provide high temporal resolution precipitation information at a global level. However, the coarse spatial resolution has restricted their use in regional level studies. In this study, mo...

متن کامل

Downscaling soil moisture in the southern Great Plains through a calibrated multifractal model for land surface modeling applications

[1] Accounting for small‐scale spatial heterogeneity of soil moisture ( ) is required to enhance the predictive skill of land surface models. In this paper, we present the results of the development, calibration, and performance evaluation of a downscaling model based on multifractal theory using aircraft‐based (800 m) estimates collected during the southern Great Plains experiment in 1997 (SGP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018